Tyndall orders AIXTRON CCS MOCVD tool to develop its GaN capabilities

AIXTRON AG has announced an order for one Close Coupled Showerhead MOCVD system from Tyndall National Institute, based in University College Cork (UCC), Ireland. The order was received in the fourth quarter 2009 and the system will be delivered in the first half of 2010 in a 3x2 inch wafer configuration.

Professor Peter Parbrook, who has been appointed to lead the GaN growth activity at the Tyndall National Institute using strategic funding from Science Foundation Ireland, comments: “From our existing AIXTRON reactors we are very familiar with the quality of performance and engineering available with their tools. There are many reasons why we opted for a CCS reactor for our GaN programme: for instance the flexible reactor configuration which includes gap adjustment. Plus we can work with a range of different substrate sizes to suit our various research projects. Inherently, the tool also has high growth uniformity and we are looking forward to using the ARGUS pyrometric system to give us precision in-situ monitoring and process control.” The growth tool will complement Tyndall’s existing expertise in the theory of GaN photonic materials and fabrication of GaN based devices.

Following installation by local AIXTRON support team the new system will be used to support work on advanced GaN technologies. This includes growth of GaN / (Al, Ga, In)N-based materials for opto-electronic and micro-electronic devices with a focus on high temperature growth of AlGaN structures.

About Tyndall National Institute
Tyndall National Institute, UCC is one of Europe's leading research centres, specialising in ICT hardware research, commercialisation of technology and the education of next generation researchers. The Institute has a critical mass of over 370 researchers, engineers, students and support staff focused on quality research and the commercialisation of technology through industry collaboration. Tyndall addresses technological challenges, to provide solutions in the key areas of Communications, Energy, Health and the Environment, spanning research from atoms to systems in photonics, microsystems and micro-nanoelectronics. The research is backed by a strong expertise in theory, modelling and design and a wafer fabrication facility with CMOS, III-V and MEMS capability.

Disclaimers of Warranties
1. The website does not warrant the following:
1.1 The services from the website meets your requirement;
1.2 The accuracy, completeness, or timeliness of the service;
1.3 The accuracy, reliability of conclusions drawn from using the service;
1.4 The accuracy, completeness, or timeliness, or security of any information that you download from the website
2. The services provided by the website is intended for your reference only. The website shall be not be responsible for investment decisions, damages, or other losses resulting from use of the website or the information contained therein<
Proprietary Rights
You may not reproduce, modify, create derivative works from, display, perform, publish, distribute, disseminate, broadcast or circulate to any third party, any materials contained on the services without the express prior written consent of the website or its legal owner.

JBD, a pioneering MicroLED display manufacturer, has set a new standard with its Phoenix series microdisplay, achieving an industry-record white-balanced brightness of 2 million nits. JBD’s Phoenix - Native Monolithic RGB Panel Leveragin... READ MORE

Veeco Instruments Inc. today announced that PlayNitride, an industry leader in MicroLED technology, has qualified Veeco’s Lumina® MOCVD system for production of next-generation MicroLEDs, and also placed an order for two systems for ... READ MORE