KAIST Develops Wearable Solar Powered OLED Display that can be Washed

Wearable devices have become common electronics in the modern society and they have been integrated with various smart applications to enhance life convenience. Apart from wearable accessories like glasses and watches, scientists are working on developing smart clothing to create even more diverse applications.

The Korea Advanced Institute of Science and Technology (KAIST) announced its new achievement in developing a textile-based display module that is washable, wearable and self-powered.


(Image: KAIST)

Professor Kyung Cheol Choi from the School of Electrical Engineering at KAIST and his team fabricated their wearing display modules on real textiles that integrated polymer solar cells (PSCs) with OLEDs. PSCs provide stable power without an external power source and have been one of the most promising candidates for a next-generation power source, especially for wearable and optoelectronic applications. Meanwhile, OLEDs can be driven with milliwatts.

PSC and OLED are both vulnerable to external moisture and oxygen and encapsulation barrier is therefore essential to ensure their reliabilities. However, the conventional encapsulation barrier does not work in aqueous environment which limits the applications of wearing displays on clothing as operation on rainy days or after washing is a must.

To tackle this issue, the team employed a washable encapsulation barrier that can protect the device without losing its characteristics after washing through atomic layer deposition (ALD) and spin coating. With this encapsulation technology, the team confirmed that textile-based wearing display modules including PSCs, OLEDs, and the proposed encapsulation barrier exhibited little change in characteristics even after 20 washings with 10-minute cycles. Moreover, the encapsulated device operated stably with a low curvature radius of 3mm and boasted high reliability.


(Image: KAIST)

KAIST said the textile-based washable display module would push the commercialization of wearing electronic devices as it showed no deterioration in properties over 30 days even after being subjected to both bending stress and washing. Moreover, this wearable electronic device with self-powered system could save energy.

This research, in collaboration with Professor Seok Ho Cho from Chonnam National University and led by Eun Gyo Jeong, was published in Energy and Environmental Science on January 18, 2019.

Disclaimers of Warranties
1. The website does not warrant the following:
1.1 The services from the website meets your requirement;
1.2 The accuracy, completeness, or timeliness of the service;
1.3 The accuracy, reliability of conclusions drawn from using the service;
1.4 The accuracy, completeness, or timeliness, or security of any information that you download from the website
2. The services provided by the website is intended for your reference only. The website shall be not be responsible for investment decisions, damages, or other losses resulting from use of the website or the information contained therein<
Proprietary Rights
You may not reproduce, modify, create derivative works from, display, perform, publish, distribute, disseminate, broadcast or circulate to any third party, any materials contained on the services without the express prior written consent of the website or its legal owner.

Violumas, provider of high-power UV LED solutions and inventor of 3-PAD LED technology, is proud to launch the release of new 275nm and 265nm LEDs in mid-power, high-power, and high-density packages. The radiant flux of the new 275nm and 265nm... READ MORE

DURHAM, NC – November 12, 2024 –– Cree LED, a Penguin Solutions brand (Nasdaq: PENG), today announced the launch of its new CV28D LEDs with FusionBeam™ Technology, a groundbreaking advancement for the LED signage market... READ MORE