NIST Develops New Design to Boost LED Efficiency, Creating Opportunities for Sub-Micro LED Applications

The National Institute of Standards and Technology (NIST) published a new article in Science Advances demonstrating a new design for LED that may overcome a long-standing limitation in the light sources' efficiency. The research team developed microscopic LEDs which achieve a dramatic increase in brightness as well as the ability to create laser light.

Consisting of scientists from the University of Maryland, Rensselaer Polytechnic Institute and the IBM Thomas J. Watson Research Center, the team achieved 100 to 1,000 times higher brightness with LEDs made by the new approach comparing to conventional tiny, submicron-sized LEDs.


(Image: NIST)

"It's a new architecture for making LEDs," said NIST's Babak Nikoobakht, who conceived the new design. "We use the same materials as in conventional LEDs. The difference in ours is their shape."

While their novel LED design overcomes efficiency droop, the researchers did not initially set out to solve this problem. Their main goal was to create a microscopic LED for use in very small applications, such as the lab-on-a-chip technology that scientists at NIST and elsewhere are pursuing.

The team experimented with a whole new design for the part of the LED that shines: Unlike the flat, planar design used in conventional LEDs, the researchers built a light source out of 5 µm zinc oxide strands they refer to as fins. Their fin can produce up to 20 microwatts while a typical LED of less than 25µm shines with about 22 nanowatts.


(Image: NIST)

As the team increased the current for the LED, its comparatively broad emission eventually narrowed to two wavelengths of intense violet color, meaning that it turned to a tiny laser.

"Converting an LED into a laser takes a large effort. It usually requires coupling a LED to a resonance cavity that lets the light bounce around to make a laser," Nikoobakht said. "It appears that the fin design can do the whole job on its own, without needing to add another cavity."

Disclaimers of Warranties
1. The website does not warrant the following:
1.1 The services from the website meets your requirement;
1.2 The accuracy, completeness, or timeliness of the service;
1.3 The accuracy, reliability of conclusions drawn from using the service;
1.4 The accuracy, completeness, or timeliness, or security of any information that you download from the website
2. The services provided by the website is intended for your reference only. The website shall be not be responsible for investment decisions, damages, or other losses resulting from use of the website or the information contained therein<
Proprietary Rights
You may not reproduce, modify, create derivative works from, display, perform, publish, distribute, disseminate, broadcast or circulate to any third party, any materials contained on the services without the express prior written consent of the website or its legal owner.
  Seoul Semiconductor, Seoul Viosys CES 2025 Exhibition Booth Global optoelectronics leader Seoul Semiconductor and Seoul Viosys (hereafter, "Seoul") participated in CES 2025, held in Las Vegas, USA, from January 7 to 10, 2024. ... READ MORE

In automotive lighting, achieving precise RGB LED color calibration can be a real challenge. Automotive lighting engineers or designers often face time-consuming, intricate processes to ensure that RGB LEDs display accurate colors under differ... READ MORE