Northwestern University Develops Single-chip Laser for Dangerous Chemical Detection

From their use in telecommunication to detecting hazardous chemicals, lasers play a major role in our everyday lives. They keep us connected, keep us safe, and allow us to explore the dark corners of the universe.

Now a Northwestern University team has made this ever-important tool even simpler and more versatile by integrating a mid-infrared tunable laser with an on-chip amplifier. This breakthrough allows adjustable wavelength output, modulators, and amplifiers to be held inside a single package.

With this architecture, the laser has demonstrated an order-of-magnitude more output power than its predecessors, and the tuning range has been enhanced by more than a factor of two.

Single-chip laser developed by Northwestern University. (Photo courtesy of Northwestern)

"We have always been leaders in high-power and high-efficiency lasers," said Manijeh Razeghi, Walter Murphy Professor of Electrical Engineering and Computer Science at Northwestern's McCormick School of Engineering, who led the study. "Combining an electrically tunable wavelength with high power output was the next logical extension."

Supported by the Department of Homeland Security Science and Technology Directorate, National Science Foundation, Naval Air Systems Command, and NASA, the research is described in a paper published online on December 21, 2015 in the journal Applied Physics Letters.

With mid-infrared spectroscopy, a chemical can be identified through its unique absorption spectrum. This greatly interests government agencies that aim to detect hazardous chemicals or possible explosive threats. Because Razeghi's new system is highly directional, the high power can be used more efficiently, allowing for the greater ability to detect chemicals. It also allows for standoff application, which keeps personnel physically distant from potentially dangerous environments. The technology could also benefit free-space optical communications and aircraft protection.

This new research builds on Razeghi's many years of research with Northwestern's Center for Quantum Devices. In 2012, she developed a widely tunable, single chip, mid-infrared laser.

 

"We demonstrated the first continuously tunable, continuous operation, mid-infrared lasers with electrical tuning of the emission wavelength," Razeghi said. "This initial demonstration was very exciting, and continuing developing has led us to a number of new projects."

Disclaimers of Warranties
1. The website does not warrant the following:
1.1 The services from the website meets your requirement;
1.2 The accuracy, completeness, or timeliness of the service;
1.3 The accuracy, reliability of conclusions drawn from using the service;
1.4 The accuracy, completeness, or timeliness, or security of any information that you download from the website
2. The services provided by the website is intended for your reference only. The website shall be not be responsible for investment decisions, damages, or other losses resulting from use of the website or the information contained therein<
Proprietary Rights
You may not reproduce, modify, create derivative works from, display, perform, publish, distribute, disseminate, broadcast or circulate to any third party, any materials contained on the services without the express prior written consent of the website or its legal owner.
ams OSRAM’s OSIRE® E3731i and Stand-Alone Intelligent Driver (SAID) use OSP license-free protocol to connect color LEDs, sensors and microcontrollers. ams OSRAM, a global leader in intelligent emitting and sensing technologies, will... READ MORE

JBD, a pioneering MicroLED display manufacturer, has set a new standard with its Phoenix series microdisplay, achieving an industry-record white-balanced brightness of 2 million nits. JBD’s Phoenix - Native Monolithic RGB Panel Leveragin... READ MORE