Mitsubishi Electric Develops MEMS LiDAR Solution for Autonomous Vehicles

Mitsubishi Electric announced that it has developed a compact LiDAR solution incorporating a micro-electromechanical system (MEMS) that achieves an extra-wide horizontal scanning angle to accurately detect the shapes and distances of objects ahead in autonomous driving systems.

The new LiDAR solution irradiates objects by laser and uses a dual-axis (horizontal and vertical) MEMS mirror to scan for the reflected light, generating three-dimensional images of vehicles and pedestrians. Mitsubishi Electric expects this compact, low-cost solution to contribute to the realization of safe, secure autonomous driving.


(Image: Mitsubishi Electric)

Mitsubishi Electric noted that the new LiDAR solution features optimized compact design with large dual-axis electromagnetic mirror that enable wide scanning angle and acquisition of 3D images over wide area.

The LiDAR of Mitsubishi Electric incorporates the industry's largest electromagnetic MEMS mirror, measuring 7mm by 5mm, in a lightweight design which is able to scan horizontally and vertically. Despite its size, the unique structure of the MEMS mirror facilitates a reduction in weight without sacrificing rigidity. The lightweight design and high electromagnetically generated driving force allows the mirror to achieve large horizontal movement of ±15 degrees. Vertical movement is currently ±3.4 degrees, and Mitsubishi Electric aims to increase this to ±6.0 degrees or more by improving the beam structure of the MEMS.


(Image: Mitsubishi Electric)

The company also optimized the arrangement of the electromagnetic MEMS mirror and optical components—including multiple laser light sources, photodetectors and lenses—to suppress optical vignetting and to avoid the laser beam being distorted by any of the LiDAR's internal components. The optimized design and optical transmission/reception mechanism achieve an extra-wide horizontal scanning angle, enhancing the scanning of vehicles ahead or oncoming vehicles, pedestrians crossing the road, traffic lights, traffic signs, and roadside obstacles. With continued development, Mitsubishi Electric aims to achieve a vertical scanning angle exceeding 25 degrees, which will allow the detection of vehicles and pedestrians even in close proximity.

The LiDAR body has a volume of just 900 cc owing to optimal arrangement of the signal processing circuitry, power supply circuit and optical transmission/reception mechanism. Going forward, Mitsubishi Electric is targeting development of an extra-small unit with a volume of just 350 cc or less.

Disclaimers of Warranties
1. The website does not warrant the following:
1.1 The services from the website meets your requirement;
1.2 The accuracy, completeness, or timeliness of the service;
1.3 The accuracy, reliability of conclusions drawn from using the service;
1.4 The accuracy, completeness, or timeliness, or security of any information that you download from the website
2. The services provided by the website is intended for your reference only. The website shall be not be responsible for investment decisions, damages, or other losses resulting from use of the website or the information contained therein<
Proprietary Rights
You may not reproduce, modify, create derivative works from, display, perform, publish, distribute, disseminate, broadcast or circulate to any third party, any materials contained on the services without the express prior written consent of the website or its legal owner.

Violumas, provider of high-power UV LED solutions and inventor of 3-PAD LED technology, is proud to launch the release of new 275nm and 265nm LEDs in mid-power, high-power, and high-density packages. The radiant flux of the new 275nm and 265nm... READ MORE

DURHAM, NC – November 12, 2024 –– Cree LED, a Penguin Solutions brand (Nasdaq: PENG), today announced the launch of its new CV28D LEDs with FusionBeam™ Technology, a groundbreaking advancement for the LED signage market... READ MORE