Australian Researchers Dope Nanolasers to Improve Efficiency

Scientists at ANU have improved the performance of tiny lasers by adding impurities, in a discovery which will be central to the development of low-cost biomedical sensors, quantum computing, and a faster internet.

Researcher Tim Burgess added atoms of zinc to lasers one hundredth the diameter of a human hair and made of gallium arsenide - a material used extensively in smartphones and other electronic devices.

The doping has really has given these nanolasers a performance edge. (Photo courtesy of Stuart Hay)

The impurities led to a 100 times improvement in the amount of light from the lasers.

"Normally you wouldn't even bother looking for light from nanocrystals of gallium arsenide - we were initially adding zinc simply to improve the electrical conductivity," said Mr Burgess, a PhD student in the ANU Research School of Physics and Engineering.

"It was only when I happened to check for light emission that I realised we were onto something."

Gallium arsenide is a common material used in photovoltaic cells, lasers and light-emitting diodes (LEDs), but is challenging to work with at the nanoscale as the material requires a surface coating before it will produce light.

Previous ANU studies have shown how to fabricate suitable coatings.

The new result complements these successes by increasing the amount of light generated inside the nanostructure, said research group leader Professor Chennupati Jagadish, from the ANU Research School of Physics Sciences.

"It is an exciting discovery and opens up opportunities to study other nanostructures with enhanced light emission efficiency so that we can shrink the size of the lasers further," he said.

Mr Burgess said that the addition of the impurity to gallium arsenide, a process called doping, did not only improve the light emission.

"The doped gallium arsenide has a very short carrier lifetime of only a few picoseconds, which meant it would be well suited to use in high speed electronics components," he said.

"The doping has really has given these nanolasers a performance edge."

The research is published in Nature Communications.

Disclaimers of Warranties
1. The website does not warrant the following:
1.1 The services from the website meets your requirement;
1.2 The accuracy, completeness, or timeliness of the service;
1.3 The accuracy, reliability of conclusions drawn from using the service;
1.4 The accuracy, completeness, or timeliness, or security of any information that you download from the website
2. The services provided by the website is intended for your reference only. The website shall be not be responsible for investment decisions, damages, or other losses resulting from use of the website or the information contained therein<
Proprietary Rights
You may not reproduce, modify, create derivative works from, display, perform, publish, distribute, disseminate, broadcast or circulate to any third party, any materials contained on the services without the express prior written consent of the website or its legal owner.

Violumas, provider of high-power UV LED solutions and inventor of 3-PAD LED technology, is proud to launch the release of new 275nm and 265nm LEDs in mid-power, high-power, and high-density packages. The radiant flux of the new 275nm and 265nm... READ MORE

DURHAM, NC – November 12, 2024 –– Cree LED, a Penguin Solutions brand (Nasdaq: PENG), today announced the launch of its new CV28D LEDs with FusionBeam™ Technology, a groundbreaking advancement for the LED signage market... READ MORE