Foil LED Technology Offer Better UV Sterilization Designs

For the first time, researchers have created light-emitting diodes (LEDs) on lightweight flexible metal foil.

Engineers at The Ohio State University are developing the foil based LEDs for portable ultraviolet (UV) lights that soldiers and others can use to purify drinking water and sterilize medical equipment.

Ohio State University researchers have developed a technique to create light emitting diodes on metal foil. (Image by Brelon J. May, Photo courtesy of The Ohio State University.)

In the journal Applied Physics Letters, the researchers describe how they designed the LEDs to shine in the high-energy “deep” end of the UV spectrum. The university will license the technology to industry for further development.

Deep UV light is already used by the military, humanitarian organizations and industry for applications ranging from detection of biological agents to curing plastics, explained Roberto Myers, associate professor of materials science and engineering at Ohio State.

The problem is that conventional deep-UV lamps are too heavy to easily carry around.

“Right now, if you want to make deep ultraviolet light, you’ve got to use mercury lamps,” said Myers, who is also an associate professor of electrical and computer engineering. “Mercury is toxic and the lamps are bulky and electrically inefficient. LEDs, on the other hand, are really efficient, so if we could make UV LEDs that are safe and portable and cheap, we could make safe drinking water wherever we need it.”

Nanowires developed by University of Ohio.

He noted that other research groups have fabricated deep-UV LEDs at the laboratory scale, but only by using extremely pure, rigid single-crystal semiconductors as substrates—a strategy that imposes an enormous cost barrier for industry.

Foil-based nanotechnology could enable large-scale production of a lighter, cheaper and more environmentally friendly deep-UV LED. But Myers and materials science doctoral student Brelon J. May hope that their technology will do something more: turn a niche research field known as nanophotonics into a viable industry.

“People always said that nanophotonics will never be commercially important, because you can’t scale them up. Well, now we can. We can make a sheet of them if we want,” Myers said. “That means we can consider nanophotonics for large-scale manufacturing.”

In part, this new development relies on a well-established semiconductor growth technique known as molecular beam epitaxy, in which vaporized elemental materials settle on a surface and self-organize into layers or nanostructures. The Ohio State researchers used this technique to grow a carpet of tightly packed aluminum gallium nitride wires on pieces of metal foil such as titanium and tantalum.

The individual wires measure about 200 nanometers tall and about 20-50 nanometers in diameter—thousands of times narrower than a human hair and invisible to the naked eye.

In laboratory tests, the nanowires grown on metal foils lit up nearly as brightly as those manufactured on the more expensive and less flexible single-crystal silicon.

The researchers are working to make the nanowire LEDs even brighter, and will next try to grow the wires on foils made from more common metals, including steel and aluminum.

This research was funded by the Army Research Office and the National Science Foundation. Study co-author A.T.M. Golam Sarwar earned his doctoral degree in the course of this work at Ohio State, and is now at Intel.

Disclaimers of Warranties
1. The website does not warrant the following:
1.1 The services from the website meets your requirement;
1.2 The accuracy, completeness, or timeliness of the service;
1.3 The accuracy, reliability of conclusions drawn from using the service;
1.4 The accuracy, completeness, or timeliness, or security of any information that you download from the website
2. The services provided by the website is intended for your reference only. The website shall be not be responsible for investment decisions, damages, or other losses resulting from use of the website or the information contained therein<
Proprietary Rights
You may not reproduce, modify, create derivative works from, display, perform, publish, distribute, disseminate, broadcast or circulate to any third party, any materials contained on the services without the express prior written consent of the website or its legal owner.

Violumas, provider of high-power UV LED solutions and inventor of 3-PAD LED technology, is proud to launch the release of new 275nm and 265nm LEDs in mid-power, high-power, and high-density packages. The radiant flux of the new 275nm and 265nm... READ MORE

DURHAM, NC – November 12, 2024 –– Cree LED, a Penguin Solutions brand (Nasdaq: PENG), today announced the launch of its new CV28D LEDs with FusionBeam™ Technology, a groundbreaking advancement for the LED signage market... READ MORE