Photon-counting Camera based on SPADs to Capture 3D Images in High Speed, Enabling Advanced AR or LiDAR Systems

Researchers have developed the first megapixel photon-counting camera based on new-generation image sensor technology that uses single-photon avalanche diodes (SPADs). The new camera can detect single photons of light at unprecedented speeds, a capability that could advance applications that require fast acquisition of 3D images such as augmented reality and LiDAR systems for autonomous vehicles.

"Thanks to its high resolution and ability to measure depth, this new camera could make virtual reality more realistic and let you interact with augmented reality information in a more seamless manner," said Edoardo Charbon from the Advanced Quantum Architecture Laboratory (AQUALab) at École polytechnique fédérale de Lausanne (EPFL) in Switzerland. Charbon developed the idea for the new camera and is the founder and head of AQUALab, where the image sensor was designed.

The research team published their results in Optica, The Optical Society's (OSA) journal describing the way of creating one of the smallest SPAD pixels ever with devised and reduced power consumption of each pixel to less than 1 microwatt while maintaining speed and timing precision. The new camera can acquire images at up to 24,000 frames per second. For comparison, 30 frames per second is the standard rate used to record video for television.


(Image: Arianna M. Charbon, Kazuhiro Morimoto, Edoardo Charbon)

The extremely small SPAD pixels was manufactured by using a feedback mechanism that almost immediately quenches the avalanche of electrons triggered by photon detection. They also used enhanced layout techniques to pack the SPAD sensors tighter, thus upping the detection area density and enabling a camera with a million pixels. The researchers then applied integrated circuit design techniques to create a uniform distribution of fast electrical signals over the large-scale pixel array. They showed that the shutter speeds varied by only 3 percent over the million pixels, demonstrating that this sensor could feasibly be made using available mass-production techniques.

The camera's speed makes it possible to measure the time a photon hits the sensor very precisely. This information can be used to calculate how long it takes individual photons to travel the distance from a source to the camera, known as time-of-flight. Combining time-of-flight information with the ability to capture a million pixels simultaneously enables extremely high-speed reconstruction of 3D images.

"For transportation applications, this new camera could help achieve unprecedented levels of autonomy and safety by enabling multiple low-power LiDAR devices to be used on a vehicle, providing fast, high-resolution 3D view of the surroundings," said first author, Kazuhiro Morimoto from Canon Inc. in Japan. "In a somewhat more distant future, quantum communication, sensing and computing could all benefit from photon-counting cameras with multi-megapixel resolution."

Disclaimers of Warranties
1. The website does not warrant the following:
1.1 The services from the website meets your requirement;
1.2 The accuracy, completeness, or timeliness of the service;
1.3 The accuracy, reliability of conclusions drawn from using the service;
1.4 The accuracy, completeness, or timeliness, or security of any information that you download from the website
2. The services provided by the website is intended for your reference only. The website shall be not be responsible for investment decisions, damages, or other losses resulting from use of the website or the information contained therein<
Proprietary Rights
You may not reproduce, modify, create derivative works from, display, perform, publish, distribute, disseminate, broadcast or circulate to any third party, any materials contained on the services without the express prior written consent of the website or its legal owner.
Display devices have been used for many years as a means of HMI (Human Machine Interface) to connect humans and machines interactively, and their usage are still expanding. Automotive interiors are no exception to this trend, with an increasing ... READ MORE
About LiDAR Automotive industry trends In recent years, many vehicles have been launched with ADAS (Advanced Driver Assistance Systems) as standard equipment. As the future evolves towards more automated driving, sensing around the vehicle i... READ MORE