University of Cambridge Installs Further AIXTRON MOCVD System

Long-term collaboration for growth of 6-inch GaN-on-Si wafers planned

AIXTRON SE
today announced that the University of Cambridge has successfully commissioned another multi-wafer Close Coupled Showerhead (CCS) MOCVD reactor at its new facility at the Department of Material Science and Metallurgy. The CCS 6x2-inch system will be configured to handle single 6-inch (150mm) wafers (1x6-inch). 

“We will be using the systems to expand our research efforts for LED and electronic devices based on gallium nitride (GaN) epitaxy on 6-inch silicon wafers,” comments Professor Sir Colin Humphreys, Director of Research in the Department of Materials Science and Metallurgy. “We already use one CCS 6x2-inch system in our work, but the gathering pace of GaN-on-Si development means that we need an extra system with large diameter wafer handling.”


Tony Pearce, Managing Director at AIXTRON Ltd., comments: “AIXTRON is proud to continue its long-standing collaboration with the University of Cambridge and to supply another state-of-the-art CCS research system to complement the university’s existing reactor. Under Prof. Humphreys’ lead, the Cambridge group has developed world leading GaN-on-Si processes and we look forward to further supporting this work with this new system.”

Dr. Frank Schulte, Vice President AIXTRON Europe, adds: “We are very pleased to announce this repeat order from Prof. Colin Humphreys and his team, pioneers of the GaN-on-Si technology, as they push the industry forward to success. Using silicon substrates for power electronics and LED applications, this technology should gain a big share from the existing market.”

The Centre for Gallium Nitride inCambridge,UK, not only grows nitride semiconductors, but is one of the few places in the world to have on the same site extensive advanced characterization facilities such as electron microscopy, X-ray diffraction, atomic force microscopy, photoluminescence (PL), and Hall effect equipment. The team also includes specialists in basic theory for understanding in detail the physical properties of nitride semiconductor materials.

AIXTRON SE today announced that the University of Cambridge has successfully commissioned another multi-wafer Close Coupled Showerhead (CCS) MOCVD reactor at its new facility at the Department of Material Science and Metallurgy. The CCS 6x2-inch system will be configured to handle single 6-inch (150mm) wafers (1x6-inch).
 
“We will be using the systems to expand our research efforts for LED and electronic devices based on gallium nitride (GaN) epitaxy on 6-inch silicon wafers,” comments Professor Sir Colin Humphreys, Director of Research in the Department of Materials Science and Metallurgy. “We already use one CCS 6x2-inch system in our work, but the gathering pace of GaN-on-Si development means that we need an extra system with large diameter wafer handling.”

Tony Pearce, Managing Director at AIXTRON Ltd., comments: “AIXTRON is proud to continue its long-standing collaboration with the University of Cambridge and to supply another state-of-the-art CCS research system to complement the university’s existing reactor. Under Prof. Humphreys’ lead, the Cambridge group has developed world leading GaN-on-Si processes and we look forward to further supporting this work with this new system.”

Dr. Frank Schulte, Vice President AIXTRON Europe, adds: “We are very pleased to announce this repeat order from Prof. Colin Humphreys and his team, pioneers of the GaN-on-Si technology, as they push the industry forward to success. Using silicon substrates for power electronics and LED applications, this technology should gain a big share from the existing market.”

The Centre for Gallium Nitride inCambridge,UK, not only grows nitride semiconductors, but is one of the few places in the world to have on the same site extensive advanced characterization facilities such as electron microscopy, X-ray diffraction, atomic force microscopy, photoluminescence (PL), and Hall effect equipment. The team also includes specialists in basic theory for understanding in detail the physical properties of nitride semiconductor materials.

Disclaimers of Warranties
1. The website does not warrant the following:
1.1 The services from the website meets your requirement;
1.2 The accuracy, completeness, or timeliness of the service;
1.3 The accuracy, reliability of conclusions drawn from using the service;
1.4 The accuracy, completeness, or timeliness, or security of any information that you download from the website
2. The services provided by the website is intended for your reference only. The website shall be not be responsible for investment decisions, damages, or other losses resulting from use of the website or the information contained therein<
Proprietary Rights
You may not reproduce, modify, create derivative works from, display, perform, publish, distribute, disseminate, broadcast or circulate to any third party, any materials contained on the services without the express prior written consent of the website or its legal owner.
Display devices have been used for many years as a means of HMI (Human Machine Interface) to connect humans and machines interactively, and their usage are still expanding. Automotive interiors are no exception to this trend, with an increasing ... READ MORE
About LiDAR Automotive industry trends In recent years, many vehicles have been launched with ADAS (Advanced Driver Assistance Systems) as standard equipment. As the future evolves towards more automated driving, sensing around the vehicle i... READ MORE