[News] HKUST Engineering Researchers Develop World’s First Deep-UV MicroLED Display Chips for Maskless Photolithography

News Source: 

In a breakthrough set to revolutionize the semiconductor industry, the School of Engineering of the Hong Kong University of Science and Technology (HKUST) has developed the world’s first-of-its-kind deep-ultraviolet (UVC) microLED display array for lithography machines. This enhanced efficiency UVC microLED has showcased the viability of a lowered cost maskless photolithography through the provision of adequate light output power density, enabling exposure of photoresist films in a shorter time.

Conducted under the supervision of Prof. KWOK Hoi-Sing, Founding Director of the State Key Laboratory of Advanced Displays and Optoelectronics Technologies at HKUST, the study was a collaborative effort with the Southern University of Science and Technology, and the Suzhou Institute of Nanotechnology of the Chinese Academy of Sciences.

A lithography machine is crucial equipment for semiconductor manufacturing, applying short-wavelength ultraviolet light to make integrated circuit chips with various layouts. However, traditional mercury lamps and deep ultraviolet LED light sources have shortcomings such as large device size, low resolution, high energy consumption, low light efficiency, and insufficient optical power density.

To overcome these challenges, the research team built a maskless lithography prototype platform and used it to fabricate the first microLED device by using deep UV microLED with maskless exposure, improving optical extraction efficiency, heat distribution performance, and epitaxial stress relief during the production process.

Prof. Kwok highlighted, “The team achieved key breakthroughs for the first microLED device including high power, high light efficiency, high-resolution pattern display, improved screen performance and fast exposure ability. This deep-UV microLED display chip integrates the ultraviolet light source with the pattern on the mask. It provides sufficient irradiation dose for photoresist exposure in a short time, creating a new path for semiconductor manufacturing.”

“In recent years, the low-cost and high-precision maskless lithography technology of traditional lithography machines has become an R&D hotspot because of its ability to adjust the exposure pattern, provide more diverse customization options, and save the cost of preparing lithography masks. Photoresist-sensitive short-wavelength microLED technology is therefore critical to the independent development of semiconductor equipment,” Prof. Kwok explained.

“Compared with other representative works, our innovation features smaller device size, lower driving voltage, higher external quantum efficiency, higher optical power density, larger array size, and higher display resolution. These key performance enhancements make the study a global leader in all metrics,” Dr. FENG Feng, postdoctoral research fellow at HKUST’s Department of Electronic and Computer Engineering (ECE), concluded.

Their paper, titled “High-Power AlGaN Deep-Ultraviolet Micro-Light-Emitting Diode Displays for Maskless Photolithography”, has been published in the top journal Nature Photonics. It has since earned wide recognition in the industry and was named by the 10th International Forum on Wide Bandgap Semiconductors (IFWS) as one of the top ten advances in China’s third-generation semiconductor technology in 2024.

Looking forward, the team plans to continue enhancing the performance of AlGaN deep ultraviolet microLEDs, improve the prototype, and develop 2k to 8k high-resolution deep ultraviolet microLED display screens.

Dr. Feng is the first author, while Prof. LIU Zhaojun, Adjunct Associate Professor of HKUST’s ECE Department, who concurrently serves as an Associate Professor at Southern University of Science and Technology, is the corresponding author. Team members also include ECE postdoctoral research fellow Dr. LIU Yibo, PhD graduate Dr. ZHANG Ke, and collaborators from other institutions. 

(Photo credit: HKUST)

TrendForce 2024 Micro LED Market Trend and Technology Cost Analysis
Release: 31 May / 30 November 2024
Language: Traditional Chinese / English
Format: PDF
Page: 160-180

TrendForce 2024 Deep UV LED Market Trend and Product Analysis
Release Date: 31 March, 15 September 2024
Languages: Traditional Chinese / English
Format: PDF / EXCEL
Pages: 50-60 / Semi-Annual

If you would like to know more details , please contact:

Global Contact:
 
ShenZhen:
Grace Li
E-mail :  Graceli@trendforce.com
Tel : +886-2-8978-6488 ext.916
  Perry Wang
E-mail :  Perrywang@trendforce.cn
Tel : +86-755-82838931 ext.6800
Disclaimers of Warranties
1. The website does not warrant the following:
1.1 The services from the website meets your requirement;
1.2 The accuracy, completeness, or timeliness of the service;
1.3 The accuracy, reliability of conclusions drawn from using the service;
1.4 The accuracy, completeness, or timeliness, or security of any information that you download from the website
2. The services provided by the website is intended for your reference only. The website shall be not be responsible for investment decisions, damages, or other losses resulting from use of the website or the information contained therein<
Proprietary Rights
You may not reproduce, modify, create derivative works from, display, perform, publish, distribute, disseminate, broadcast or circulate to any third party, any materials contained on the services without the express prior written consent of the website or its legal owner.

Revolutionizing Entertainment Lighting with Cree LED’s XLamp® XN-P Color LEDs Experience the next level of lighting innovation with XLamp® XN-P Color LEDs, a high-power multi-color LED platform designed for ultimate versatility a... READ MORE

ams OSRAM’s OSIRE® E3731i and Stand-Alone Intelligent Driver (SAID) use OSP license-free protocol to connect color LEDs, sensors and microcontrollers. ams OSRAM, a global leader in intelligent emitting and sensing technologies, will... READ MORE