Solar-Tectic LLC Develops Inexpensive Sapphire Glass with MOHS 8

In 2015 Solar-Tectic LLC ("ST") announced plans to develop sapphire glass. And recently ST announced that it has succeeded in developing this sapphire glass using its patent pending technique which was reported on in Materials Letters, a peer reviewed journal (http://www.sciencedirect.com/science/article/pii/S0167577X14015572).
 
(Solar-Tectic/ LEDinside)
 
The new sapphire glass technique involves the deposition of a highly transparent crystalline Al2O3 (aluminum oxide) thin-film on ordinary soda-lime glass, via a thin buffer layer, using a simple and common deposition technique (e-beam evaporation), thus achieving a breakthrough material which is much less expensive and much lighter than single crystal sapphire, and easily scalable for manufacturing and commercialization.
 
The sapphire film is extremely thin which is important for cost reduction in manufacturing. In recent years Apple Inc. and others have tried without success in making cost effective sapphire glass for smartphone covers.
 
In addition to anti-scratch, ceramic glass products are an important part of ST solar technology since they can be used for the deposition of highly textured (oriented), good quality semiconductor films on inexpensive substrates for efficient photovoltaic, display, and LED electronics. 
 
ST ceramic glass can also be conducting, as in the case of titanium nitride (TiN) for example. A distinguishing feature of ST's approach is to make films that have "texture" or preferential orientation which means the crystals in the films are aligned -- greatly improving the electronic properties of materials.
 
Remarkably, the new sapphire glass has a MOHS 8 (verified by a 3rd party independent institution).  Single crystal sapphire has a MOHS 9.  Therefore, the ST sapphire glass is close to single crystal sapphire in hardness. This is the first time this hardness has ever been achieved on ordinary soda-lime glass. Al2O3 is one of the hardest materials known, second only to diamond.
 
ST is also developing this approach using laser instead of e-beam.  ST will be optimizing the films with the aim of achieving MOHS 9, and all kinds of glass substrates can be used in the process, including quartz.
Disclaimers of Warranties
1. The website does not warrant the following:
1.1 The services from the website meets your requirement;
1.2 The accuracy, completeness, or timeliness of the service;
1.3 The accuracy, reliability of conclusions drawn from using the service;
1.4 The accuracy, completeness, or timeliness, or security of any information that you download from the website
2. The services provided by the website is intended for your reference only. The website shall be not be responsible for investment decisions, damages, or other losses resulting from use of the website or the information contained therein<
Proprietary Rights
You may not reproduce, modify, create derivative works from, display, perform, publish, distribute, disseminate, broadcast or circulate to any third party, any materials contained on the services without the express prior written consent of the website or its legal owner.

Revolutionizing Entertainment Lighting with Cree LED’s XLamp® XN-P Color LEDs Experience the next level of lighting innovation with XLamp® XN-P Color LEDs, a high-power multi-color LED platform designed for ultimate versatility a... READ MORE

ams OSRAM’s OSIRE® E3731i and Stand-Alone Intelligent Driver (SAID) use OSP license-free protocol to connect color LEDs, sensors and microcontrollers. ams OSRAM, a global leader in intelligent emitting and sensing technologies, will... READ MORE