City College of New York (CCNY) announced their research breakthroughs in the realm of photonics, the researchers successfully demonstrated an LED based on half-light half-matter quasiparticles in atomically thin materials. According to CCNY, this is also the first successful test of an electrically driven light emitter using atomically thin semiconductors embedded in a light trapping structure.
(Schematic of a half-light- half-matter quasiparticle based LED developed in Vinod Menon's group using atomically thin materials.
Image credit: Visakh Menon)
The research was published in the journal “Nature Nanotechnology,” marking an important milestone in LED researches as this device can operate at room temperature and is fabricated using the now well known “scotch tape” based technique.
“The fact that this device is fabricated using stacks of atomically thin materials and operates at room temperature makes it an important first step towards a technologically relevant device demonstration,” noted Vinod Menon, the research team’s mentor. The potential application of the hybrid LEDs is its fast operation speed which can translate to using them for LED based communication systems including LiFi.
The research team hopes to further develop quantum emitters (single photon emitters) using similar architecture.