New LiDAR Technology Breakthroughs Revealed by Researchers to Advance Innovative Applications

Two recent researches of LiDAR introduced new solutions to improve the sensing technology. The study by University of Colorado Boulder described a new silicon ship without moving parts or electronics that enhances resolution and scanning speed for LiDAR sensor. In addition, researchers from Purdue University and École polytechnique fédérale de Lausanne (EPFL) unveiled their development with FMCW LiDAR.

For the research of Univerity of Colorado Boulder aims to develop small chip to replace existing big LiDAR system. The research team built a new way of steering laser beams called wavelength steering, where each wavelength, or "color," of the laser is pointed to a unique angle. With the technology, the chip not only provides a 2D scanning function but also 3D images with color. Since the beams are easily controlled by simply changing colors, multiple phased arrays can be controlled simultaneously to create a bigger aperture and a higher resolution image.


(Image: University of Colorado Boulder)

Results of the study was published in Optica. The researchers believe the approach can lead to cheaper and less complex LiDAR products for the market where demands for sensing and detecting applications continue to expand.

Another LiDAR research was published in Nature by the the OxideMEMS lab at Purdue University and the Laboratory of Photonics and Quantum Measurements at École polytechnique fédérale de Lausanne (EPFL), a research institute and university in Lausanne, Switzerland.

The research team built a method to enable FMCW LiDAR to achieve detection with higher resolution of fast-moving objects through mechanical control and modulation of light on a silicon chip. The technology integrates MEMS transducers made of aluminum nitride to modulate the microcomb at high frequencies ranging from megahertz to gigahertz.


(WoogieWorks graphic/Alex Mehler)

According to the researchers, the new technology could provide the impetus for microcomb applications in power-critical systems such as in space, data centers and portable atomic clocks, or in extreme environments such as those with cryogenic temperatures.

Disclaimers of Warranties
1. The website does not warrant the following:
1.1 The services from the website meets your requirement;
1.2 The accuracy, completeness, or timeliness of the service;
1.3 The accuracy, reliability of conclusions drawn from using the service;
1.4 The accuracy, completeness, or timeliness, or security of any information that you download from the website
2. The services provided by the website is intended for your reference only. The website shall be not be responsible for investment decisions, damages, or other losses resulting from use of the website or the information contained therein<
Proprietary Rights
You may not reproduce, modify, create derivative works from, display, perform, publish, distribute, disseminate, broadcast or circulate to any third party, any materials contained on the services without the express prior written consent of the website or its legal owner.
Display devices have been used for many years as a means of HMI (Human Machine Interface) to connect humans and machines interactively, and their usage are still expanding. Automotive interiors are no exception to this trend, with an increasing ... READ MORE
About LiDAR Automotive industry trends In recent years, many vehicles have been launched with ADAS (Advanced Driver Assistance Systems) as standard equipment. As the future evolves towards more automated driving, sensing around the vehicle i... READ MORE