LumiGrow Research Demonstrates Benefits from Adjustable Spectrum Lighting

LumiGrow Research, the research division of horticultural LED lighting manufacturer LumiGrow released seven new scientific posters that reveal how crop morphology and productivity can be affected through the application of varied light spectra. LumiGrow research, conducted in partnership with commercial growers and universities, demonstrates breakthrough capabilities that adjustable-spectrum LED lighting now provides growers.

Three key findings from the research:

  1. Crop height, flowering and bushiness can be controlled through the application of varied spectra. This capability is particularly important in the flower industry, where these phenotypes are currently controlled by plant growth regulators (PGRs). A reduction in the use of PGR chemicals may be an unexpected benefit of spectrum control.

  2. Light can be used to produce higher value food. Spectra have been shown to control flavor and nutritional value in every food tested including broccoli, lettuce, tomatoes and basil.

  3. Adjustable-spectrum lighting has been shown to be superior to traditional, fixed-spectrum lighting in the production and longevity of flowers suitable for market.

Dr. Melanie Yelton at work in a LumiGrow customer’s greenhouse. (Photo courtesy of LumiGrow Research)

This body of research supports the advancement of crop- and site-specific precision agriculture into greenhouses and other controlled environment agriculture environments. Previous research primarily focused on optimizing pesticides, nutrients and irrigation. The versatility of networked solid-state lighting technologies, such as the LumiGrow solution, enables novel research into the affect of light, a critical growth variable, on greenhouse crop production.”

“LumiGrow is taking LED research from theoretical to practical use, as demonstrated by the success of our growers,” said Melanie Yelton, director of Research at LumiGrow. Dr. Yelton leads research collaborations with scientists at the University of California, Davis; University of Guelph; and Harrow Research Centre, among other prominent institutions and agencies, along with numerous commercial greenhouse operators.

These posters detailing the resulting research are now downloadable in their entirety from the LumiGrow website:

Bush S, Maloof J & Yelton M. Analysis of Arabidopsis light-sensitive mutants grown under different ratios of LED and compared to fluorescent lighting. Poster session presented at American Society of Horticultural Science, 2015; New Orleans, Louisiana.

Byrtus J, Egan K & Yelton M. LEDs control growth and flowering in greenhouse-grown Zinnia marylandia. Poster session presented at ASA, CSSA, and SSSA International Annual Meeting, 2014; Long Beach, California.

Byrtus J & Yelton M. LED lighting can control plant growth, flavor and aroma in Ocimum basilicum (basil). Poster session presented at ASA, CSSA, and SSSA International Annual Meeting, 2014; Long Beach, California.

Byrtus J & Yelton M. Supplemental LED lighting increases winter tomato production in central North Carolina greenhouse tomatoes. Poster session presented at American Society of Horticultural Science Annual Conference, 2015; New Orleans, Louisiana.

Holley J, Yelton M & Heiner L. LED lighting and Phalaenopsis orchids, light wavelength effect on the flowering spike. Poster session presented at American Society of Horticultural Science Annual Conference, 2014; Orlando, Florida.

Llewellyn D, Vinson K & Zheng Y. LED superior to HPS for cut gerbera production. Poster session presented at American Society of Horticultural Science Annual Conference, 2014; Orlando, Florida.

Llewellyn D, Kong Y, Zheng Y & Yelton M. Optimum light level for snapdragon production with LEDs. Poster session presented at American Society of Horticultural Science Annual Conference, 2015; New Orleans, Louisiana.

For more information about LumiGrow spectral research, visit www.lumigrow.com, call (800) 514-0487 or email research@lumigrow.com.

Disclaimers of Warranties
1. The website does not warrant the following:
1.1 The services from the website meets your requirement;
1.2 The accuracy, completeness, or timeliness of the service;
1.3 The accuracy, reliability of conclusions drawn from using the service;
1.4 The accuracy, completeness, or timeliness, or security of any information that you download from the website
2. The services provided by the website is intended for your reference only. The website shall be not be responsible for investment decisions, damages, or other losses resulting from use of the website or the information contained therein<
Proprietary Rights
You may not reproduce, modify, create derivative works from, display, perform, publish, distribute, disseminate, broadcast or circulate to any third party, any materials contained on the services without the express prior written consent of the website or its legal owner.
The new IR:6 thin-film infrared LED chip technology is available in 850nm, 940nm and new 920nm wavelength options First IR:6-based products are the OSLON® P1616 and OSLON® Black series, giving customers a drop-in replacement that o... READ MORE
Display devices have been used for many years as a means of HMI (Human Machine Interface) to connect humans and machines interactively, and their usage are still expanding. Automotive interiors are no exception to this trend, with an increasing ... READ MORE