Demonstrates complete automotive iToF 3D sensing apparatus for in-cabin monitoring and gesture sensing
-
Demonstrates complete automotive iToF 3D sensing apparatus for in-cabin monitoring and gesture sensing
-
The illumination board features an ams OSRAM infrared VCSEL flood illuminator which offers on-chip eye safety protection
-
Integrated eye safety feature provides higher reliability, faster detection of fault conditions, and saves space compared to laser modules which require an external photodiode
Premstaetten, Austria (11 May, 2022) –
ams OSRAM (SIX: AMS), a global leader in optical solutions, announces that it is supplying a high-performance infrared laser flood illuminator for the latest automotive indirect Time-of-Flight (iToF) demonstrator from Melexis.
The ams OSRAM vertical-cavity surface-emitting laser (VCSEL) flood illuminator from the TARA2000-AUT family has been chosen for the new, improved version of the EVK75027 iToF sensing kit because it features an integrated eye safety interlock. This provides for a more compact, more reliable and faster system implementation than other VCSEL flood illuminators that require an external photodiode and processing circuitry.
The Melexis demonstrates the combined capabilities of the new ams OSRAM 940nm VCSEL flood illuminator in combination with an interface board and a processor board and the MLX75027 iToF sensor. The evaluation kit provides a complete hardware implementation of iToF depth sensing on which automotive OEMs can run software for cabin monitoring functions such as occupant detection and gesture sensing.
More reliable operation, faster detection of eye safety risks
The new ams OSRAM VCSEL with integrated eye safety interlock is implemented directly on the micro-lens array of the VCSEL module, and detects any cracks or apertures that can cause an eye safety risk. Earlier automotive implementations of iToF sensing have used VCSEL illuminators that require an external photodiode, a fault-prone, indirect method of providing the eye safety interlock function.
The read-out circuit requires no additional components other than an AND gate or a MOSFET. This produces almost instant (<1µs) reactions to fault conditions. A lower component count also reduces the bill-of-materials cost compared to photodiode-based systems. By eliminating the use of an external photodiode, the eye safety interlock eliminates the false signals created by objects such as a passenger’s hand obscuring the camera module.
“Automotive OEMs are continually looking for ways to simplify system designs and reduce component count. By integrating an eye safety interlock into the VCSEL illuminator module, ams OSRAM has found a new way to bring value to automotive customers. Not only will it reduce component count, but also increase reliability while offering the very highest levels of optical performance,” said Firat Sarialtun, Global Segment Manager for In-Cabin Sensing at ams OSRAM.
“With the EVK75027, Melexis has gone beyond the provision of a stand-alone iToF sensor to offer automotive customers a high-performance platform for 3D in-cabin sensing. We are pleased to be able to improve the value of the EVK75027 by now offering the option of a more integrated VCSEL flood illuminator on the kit’s illuminator board,” said Gualtiero Bagnuoli, Marketing manager Optical Sensors.
There is also a white paper on the new illumination board for the EVK75027, describing the benefits of implementing an iToF system with a VCSEL flood illuminator that includes an eye safety interlock. The white paper can be downloaded here:
https://www.melexis.com/Eye-safe-IR-illumination-for-3D-TOF