FEP Micropatterns OLEDs with Electron Beam Technology

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be presenting the first micro-OLEDs patterned using electron beam at Booth 1023 during SID Display Week 2016 in San Francisco / USA from May 24 – 26.
 
Fraunhofer FEP has years of experience in the field of processing organic semiconductor materials. Scientists here are also developing organic light-emitting diodes (OLEDs) and OLED microdisplays based on organic semiconductors. Currently, techniques and new applications of electron beam technology – an additional area of core expertise at Fraunhofer FEP – are being particularly investigated in the field of organic electronics. Due to their outstanding optical and electronic properties, OLEDs have a broad range of potential applications in mobile electronics and displays. Especially small displays with high pixel density, such as OLED microdisplays, are necessary for future applications such as augmented- or virtual-reality, for example. Researchers are now working on further miniaturizing while maintaining high resolution. The patterning of the organic layers in OLEDs represents one of the biggest challenges, as conventional methods such as photolithography cannot be applied to organic semiconductor materials easily.
(All photos courtesy of Fraunhofer FEP / Photographer: Jürgen Lösel)

Fraunhofer FEP scientists have developed a novel approach to pattern the emission area of an OLED at high resolution. The patented technology uses an electron beam process, which takes place after finalizing the OLED including the encapsulation. Therefore it is possible to build the OLED highly productive and completely unpatterned, before the emission is individually modified by an adjusted electron beam process. The energy of the electrons determines their penetration depth in the layer stack. With a suitable choice of process parameters, the encapsulation can also be penetrated by the electron beam and the luminous characteristics of the organic layers beneath will change without destroying or compromising the encapsulation itself. Depending on the application, it is even possible to modify individual layers directly.

“Continuous gray scales in an image can be created on a monochrome OLED using the electron beam, while at the same time the local current consumption is reduced. The longer the dwell time on one spot with the beam, the darker the OLED will appear there”, explains Elisabeth Bodenstein from the development team at Fraunhofer FEP. “An impressive example is the white OLED shown, in which the image of the famous Dresden Semperoper was structured with the electron beam in a hundred seconds.”


Even with a write time of less than two minutes, an impressive resolution of 12,700 dpi was attained – corresponding to 2 µm spacing of the image dots. The structuring of the OLED was carried out with an electron beam lithography system of Raith GmbH, the leading manufacturer of nanofabrication systems.

The process is highly adaptable – regardless of whether the OLED is applied to a rigid medium or flexible film, what color the OLED is, or whether the substrate is optically opaque, translucent, or transparent. The size of the substrate is universal as well and can be matched to the corresponding application. An enhancement to full-color patterning is being planned.

The Fraunhofer FEP scientists are now prepared to put this new technology into practice with industrial partners. The technology was developed within a project funded by the Fraunhofer Gesellschaft.

Fraunhofer FEP at the SID Display Week 2016
Invited Talk

»OLED Microdisplays: Enabling Advanced Near-to-Eye Displays, Sensors, and Beyond«
Dr. Uwe Vogel, Session 52: OLED Displays II (Paper Number 52.2)
May 26, 2016, San Francisco Moscone Convention Center, Room 131
Exhibitor Forum

»Electron Beam Induced High-Resolution Modification of OLED Emission«
Elisabeth Bodenstein

Poster
»Electron Beam Induced High-Resolution Modification of OLED Emission«
Elisabeth Bodenstein, Poster number 208
May 26, 2016, San Francisco Moscone Convention Center, Room City View (Metreon
Disclaimers of Warranties
1. The website does not warrant the following:
1.1 The services from the website meets your requirement;
1.2 The accuracy, completeness, or timeliness of the service;
1.3 The accuracy, reliability of conclusions drawn from using the service;
1.4 The accuracy, completeness, or timeliness, or security of any information that you download from the website
2. The services provided by the website is intended for your reference only. The website shall be not be responsible for investment decisions, damages, or other losses resulting from use of the website or the information contained therein<
Proprietary Rights
You may not reproduce, modify, create derivative works from, display, perform, publish, distribute, disseminate, broadcast or circulate to any third party, any materials contained on the services without the express prior written consent of the website or its legal owner.

For most of history, humans used flames to generate light. Eventually, they discovered that a super-heated metal element in a light bulb could produce useful illumination, only for this technology to be superseded by the LED. One common featur... READ MORE

Violumas, provider of high-power UV LED solutions and inventor of 3-PAD LED technology, is proud to launch the release of new 275nm and 265nm LEDs in mid-power, high-power, and high-density packages. The radiant flux of the new 275nm and 265nm... READ MORE