Polish Researchers Develop Highly Efficient Red OLEDs for Lighting and Medical Applications

Researchers from the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) in Warsaw developed two new materials with record high luminescence efficiency. The compounds were prepared using phosphine oxides (oxidised organic compounds containing phosphorouscarbon bonds) as co-ligands in europium ion-based complexes. A research group from Scotland's University of St. Andrews collaborating with the IPC PAS used the developed compounds to build prototype OLEDs generating nearly monochromatic red light.

“Both compounds, carefully designed by us, display in their class a record-breaking luminescence efficiency. As a matter of fact, we know red emitters with somewhat higher efficiency, containing iridium, but it's completely different type of materials”, notes Prof. Marek Pietraszkiewicz from the IPC PAS.

Red light emitted by europium complexes with phosphine oxides is of well-defined wavelength, about 612 nanometer (a billionth part of a meter). The luminescence quantum yields of these compounds reach 90%.

Michał Maciejczyk, a doctoral student at the IPC PAS, demonstrates record efficient luminescence of europium complexes with phosphine oxide co-ligands – new chemicals developed at the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw. (Photo Courtesy of IPC PAS, Grzegorz Krzyżewski) 

“A narrow emission wavelength range and the record-breaking efficiency result from our approach to molecular design. We attach extended, highly rigid phosphine oxides to europium complexes. As a result, the energy delivered to the molecule is not dissipated in unnecessary vibrations or rotations. Instead of delivering heat to the surrounding we have higher efficiency and virtually monochromatic light”, explains Michał Maciejczyk, a doctoral student from the International Doctoral Studies at the IPC PAS.

An important advantage of the luminescent materials developed and produced in the IPC PAS is their stability – they do not degrade when exposed to oxygen or light. Equally important is, however, the possibility to produce films of these materials from solutions. Existing manufacturing technologies for production of OLED films required usually the use of high vacuum evaporation and deposition. The vacuum deposition technique is very expensive, troublesome, and not everywhere available. It also requires that material is warmed up to 200-300 degrees centigrade, a temperature not well-tolerated by all compounds. The problems disappear when the films can be deposited directly from solution – and this is possible for phosphine oxides with europium complexes.

Potential applications of the new materials include not only OLED displays or lighting components, such as rear lights of mechanical vehicles, but also flexible elastic dermal patches for use in anticancer therapies. The europium complex-based compounds incorporated in such patches would generate light of exactly known wavelength that could locally activate appropriately selected active ingredients, delivered earlier with other methods to patient's ill skin cells. During therapy, the dermal patch would require only a small power supply from a battery. Patient mobility would be minimally affected, and hospitalisation would not be needed any longer.

The research on luminescent materials based on europium complexes at the Institute of Physical Chemistry of the PAS was supported by funds from the Polish National Science Centre.

Disclaimers of Warranties
1. The website does not warrant the following:
1.1 The services from the website meets your requirement;
1.2 The accuracy, completeness, or timeliness of the service;
1.3 The accuracy, reliability of conclusions drawn from using the service;
1.4 The accuracy, completeness, or timeliness, or security of any information that you download from the website
2. The services provided by the website is intended for your reference only. The website shall be not be responsible for investment decisions, damages, or other losses resulting from use of the website or the information contained therein<
Proprietary Rights
You may not reproduce, modify, create derivative works from, display, perform, publish, distribute, disseminate, broadcast or circulate to any third party, any materials contained on the services without the express prior written consent of the website or its legal owner.

Revolutionizing Entertainment Lighting with Cree LED’s XLamp® XN-P Color LEDs Experience the next level of lighting innovation with XLamp® XN-P Color LEDs, a high-power multi-color LED platform designed for ultimate versatility a... READ MORE

ams OSRAM’s OSIRE® E3731i and Stand-Alone Intelligent Driver (SAID) use OSP license-free protocol to connect color LEDs, sensors and microcontrollers. ams OSRAM, a global leader in intelligent emitting and sensing technologies, will... READ MORE