NSF International Includes UV LED Technology for Drinking Water Treatment Standard

NSF International’s drinking water treatment standard has recently updated it to allow a more efficient method of treating microorganisms in drinking water. The revision to NSF/ANSI 55: Ultraviolet Microbiological Water Treatment Systems establishes new criteria for use of UV-LED technology for microbial reduction and provides a new test method to certify manufacturer claims.

Treatment systems covered by the standard use UV light to inactivate or kill bacteria, viruses and cysts in microbiologically unsafe water (Class A systems) or to reduce the amount of non-disease-causing bacteria in disinfected drinking water (Class B systems).

“This is a significant update to the drinking water treatment standard. While non-disinfecting LEDs are found in everyday applications such as lighting fixtures and consumer electronics, this use of UV LED technology is very different. Lab testing shows that UV LED technology is effective at reducing bacteria and other types of microorganisms in drinking water,” said Jessica Evans, Director of Standards Development at NSF International. NSF is accredited by the American National Standards Institute (ANSI) to develop standards using its consensus-based process with a balanced group of stakeholders.

Originally developed in 1991, NSF/ANSI 55’s scope was limited to low-pressure UV radiation systems using low-pressure mercury bulbs, which was the only technology available in the marketplace at the time.

In 2014, the Drinking Water Treatment Units Joint Committee responsible for the NSF/ANSI standard began developing a protocol to address newer alternate UV technologies.

After considering several options, a task group recommended the approach of running a direct log-reduction test with an organism that would represent an entire class of organisms.

The task group concluded that the virus Q-beta is an acceptable surrogate to Rotavirus and the test method performs appropriately. This holds true at both ends of the UV wavelength range examined (254 nm to 285 nm). Testing with Q-beta directly is also a simpler, more consistent and less expensive protocol than having to conduct the collimated beam study required in the original protocol.

The existing protocol for current systems will remain in NSF/ANSI 55 for at least five years. Manufacturers will have the option to evaluate their product to the new test method or the older test method defined within the standard.

Disclaimers of Warranties
1. The website does not warrant the following:
1.1 The services from the website meets your requirement;
1.2 The accuracy, completeness, or timeliness of the service;
1.3 The accuracy, reliability of conclusions drawn from using the service;
1.4 The accuracy, completeness, or timeliness, or security of any information that you download from the website
2. The services provided by the website is intended for your reference only. The website shall be not be responsible for investment decisions, damages, or other losses resulting from use of the website or the information contained therein<
Proprietary Rights
You may not reproduce, modify, create derivative works from, display, perform, publish, distribute, disseminate, broadcast or circulate to any third party, any materials contained on the services without the express prior written consent of the website or its legal owner.
Display devices have been used for many years as a means of HMI (Human Machine Interface) to connect humans and machines interactively, and their usage are still expanding. Automotive interiors are no exception to this trend, with an increasing ... READ MORE
About LiDAR Automotive industry trends In recent years, many vehicles have been launched with ADAS (Advanced Driver Assistance Systems) as standard equipment. As the future evolves towards more automated driving, sensing around the vehicle i... READ MORE