QHC LED Fixture Awarded for Advancement in Lighting Industry

The Illuminating Engineering Society (IES) Progress Committee has recognized the innovative QHC LED fixture by Precision-Paragon [P2] as a “unique and significant advancement to the art and science of lighting.”

The award recognizes the ultra-efficient LED fixture as being the first LED high-bay luminaire with TIR-based short wavelength light suppression optics.

Some foods like milk, beer, chocolate and butter are susceptible to photooxidation, a process where exposure to certain wavelengths of light creates off-flavors and can significantly reduce the shelf life of affected foods. The same photooxidation process can also reduce the shelf life of many pharmaceuticals.

Photooxidation primarily occurs at specific wavelengths of light, below 500nm. In the past, food processing plants, dairies and pharmaceutical manufacturing facilities were restricted to using less efficient light sources that emitted longer wavelengths in order to prevent photooxidation. These facilities couldn’t take advantage of ultra-efficient LED lighting technology without damaging the products they produced.

QHC LED's Precision-Paragon [P2] provides high effecient lighting while preventing photooxidation in food processing and pharmaceutical manufacturing. (Image courtesy of QHC LED)

 

With the patent-pending QHC, [P2] has developed the first LED high-bay that does not emit light waves below 500nm. This is accomplished by adding a special total internal reflection (TIR) optic to the fixture that absorbs wavelengths of light below 500nm, and retransmits them at longer wavelengths.

As a result, facilities creating products susceptible to photooxidation can benefit from ultra-efficient LED lighting technology for the first time. The QHC is capable of replacing a 465-watt high-pressure sodium fixture with just 139 watts of LED lighting, delivering a 70 percent energy reduction.

“Until now, many food processing and pharmaceutical plants had to make do with decades-old lighting technology,” said Joe Martin, [P2]’s vice president and general manager. “I’m proud that our engineering team was the first to develop a real solution.”

The QHC’s award was announced at the IES Annual Conference in November and is profiled in the January issue of LD+A magazine. The TIR version of the QHC will be commercially available from [P2] in February of 2015, in a 135 watt 60 LED chip configuration.

Disclaimers of Warranties
1. The website does not warrant the following:
1.1 The services from the website meets your requirement;
1.2 The accuracy, completeness, or timeliness of the service;
1.3 The accuracy, reliability of conclusions drawn from using the service;
1.4 The accuracy, completeness, or timeliness, or security of any information that you download from the website
2. The services provided by the website is intended for your reference only. The website shall be not be responsible for investment decisions, damages, or other losses resulting from use of the website or the information contained therein<
Proprietary Rights
You may not reproduce, modify, create derivative works from, display, perform, publish, distribute, disseminate, broadcast or circulate to any third party, any materials contained on the services without the express prior written consent of the website or its legal owner.

Revolutionizing Entertainment Lighting with Cree LED’s XLamp® XN-P Color LEDs Experience the next level of lighting innovation with XLamp® XN-P Color LEDs, a high-power multi-color LED platform designed for ultimate versatility a... READ MORE

ams OSRAM’s OSIRE® E3731i and Stand-Alone Intelligent Driver (SAID) use OSP license-free protocol to connect color LEDs, sensors and microcontrollers. ams OSRAM, a global leader in intelligent emitting and sensing technologies, will... READ MORE