Realising A High UV Efficiency On Sapphire

News Source: 


AlN templates with a face-to-face anneal enhance deep-UV LED efficiency

The internal quantum efficiency of active regions that emit in the deep-UV can now be almost as high on AlN templates as they are on native bulk substrates, claims a team from Japan.

By minimising light-quenching dislocations with a templates formed with sputtering and annealing, the team - a partnership between Yamaguchi University, the National Institute of Technology and Mie University - has fabricated multi-quantum-well heterostructures with an internal quantum efficiency of 90 percent.

Spokesman for these researchers, Yoichi Yamada from Yamaguchi University, told Compound Semiconductor that the collaboration expected a very high quantum efficiency from its samples because calculations predicted a value of more than 80 percent for a dislocation density of 2 x 108 cm-2. “Our study has shown that [efficiency] experimentally for the first time.”

This success could underpin an increase in the bang-per-buck of commercial deep-UV LEDs. Those built on a bulk AlN foundation have an excellent internal quantum efficiency, but are high in cost, due to the expense of the substrate.

As well as cutting costs, using a sapphire substrates for this class of emitter aids process development and improves reliability, as demonstrated by the progress of the blue-emitting LED.

“In addition, the refractive index of sapphire is close to that of silicon dioxide, making it advantageous in light-extraction structures”, remarked Yamada.

He and his co-workers have fabricated light-emitting active regions on templates that are formed by sputter-depositing AlN films on c-plane sapphire substrates, which are off-cut by 0.2 ° toward the m-axis. To improve material quality prior to MOCVD growth, the researchers put faces of pairs of AlN templates together before annealing them under nitrogen, typically for several hours. According to X-ray diffraction measurements, this process reduced the screw and edge components of dislocations in the AlN film to just 1.2 x 106 cm-2 and 3.3 x 108 cm-2, respectively.

On this foundation the team added an active region, formed from ten Al0.50Ga0.50N quantum wells with a thickness of 2 nm, separated by 6 nm-thick Al0.75Ga0.25N barriers. Doping the wells and barriers with silicon decreased the density of non-radiative recombination centres consisting of cation vacancies. To provide a benchmark for evaluating that light-emitting structure, the team replicated the active region on an MOCVD-grown AlN template that had screw and edge dislocation densities of 2.9 x 107 cm-2 and 9.1 x 108 cm-2, respectively.

Internal quantum efficiencies were deduced by making photoluminescence measurements at various temperatures, and assuming that this efficiency is 100 percent at absolute zero. This methodology determined a value of 90 percent for the room-temperature internal quantum efficiency of the sample with a foundation formed by sputtering, compared with just 58 percent for the control.

By considering the internal quantum efficiency at a range of excitation densities, the team uncovered an efficiency plateau at 10 K in the sample containing a sputtered template. This feature revealed that at low excitation densities, non-radiative recombination centres are either fully saturated or completely frozen. In comparison, at that same temperature the non-radiative recombination centres in the control sample are active. Based on this finding, the researchers have concluded that using of face-to-face-annealed AlN templates decreases the density of non-radiative recombination centres in the active region.

By cranking up the temperature of the sample, Yamada and colleagues determined that the internal quantum efficiency is as high as 66 percent at 400 K and 33 percent at 500 K (see Figure above). They attribute such high values to insignificant thermal activation of non-radiative recombination centres below 400 K.

The team is now planning to fabricate and design LED light extraction structures, and to optimize quantum well structures.

REF

H. Murotani et al. Appl. Phys. Express 14 122004

 

 

TrendForce 2021 Deep UV LED Application Market and Branding Strategies
Release: 01 May 2021   ( [Update] 30th Sep. 2021 )
Language: Traditional Chinese / English
Format: PDF

If you would like to know more details , please contact:

Global Contact:
 
ShenZhen:
Grace Li
E-mail :  Graceli@trendforce.com
Tel : +886-2-8978-6488 ext.916
  Perry Wang
E-mail :  Perrywang@trendforce.cn
Tel : +86-755-82838931 ext.6800
 
  • UV
Disclaimers of Warranties
1. The website does not warrant the following:
1.1 The services from the website meets your requirement;
1.2 The accuracy, completeness, or timeliness of the service;
1.3 The accuracy, reliability of conclusions drawn from using the service;
1.4 The accuracy, completeness, or timeliness, or security of any information that you download from the website
2. The services provided by the website is intended for your reference only. The website shall be not be responsible for investment decisions, damages, or other losses resulting from use of the website or the information contained therein<
Proprietary Rights
You may not reproduce, modify, create derivative works from, display, perform, publish, distribute, disseminate, broadcast or circulate to any third party, any materials contained on the services without the express prior written consent of the website or its legal owner.
Display devices have been used for many years as a means of HMI (Human Machine Interface) to connect humans and machines interactively, and their usage are still expanding. Automotive interiors are no exception to this trend, with an increasing ... READ MORE
About LiDAR Automotive industry trends In recent years, many vehicles have been launched with ADAS (Advanced Driver Assistance Systems) as standard equipment. As the future evolves towards more automated driving, sensing around the vehicle i... READ MORE